Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Intelligent Automation and Soft Computing ; 34(2):1065-1080, 2022.
Article in English | Scopus | ID: covidwho-1876523

ABSTRACT

The outburst of novel corona viruses aggregated worldwide and has undergone severe trials to manage medical sector all over the world. A radiologist uses x-rays and Computed Tomography (CT) scans to analyze images through which the existence of corona virus is found. Therefore, imaging and visualization systems contribute a dominant part in diagnosing process and thereby assist the medical experts to take necessary precautions and to overcome these rigorous conditions. In this research, a Multi-Objective Black Widow Optimization based Convolutional Neural Network (MBWO-CNN) method is proposed to diagnose and classify covid-19 data. The proposed method comprises of four stages, preprocess the covid-19 data, attribute selection, tune parameters, and classify cov-id-19 data. Initially, images are fed to preprocess and features are selected using Convolutional Neural Network (CNN). Next, Multi-objective Black Widow Optimization (MBWO) method is imparted to finely tune the hyper parameters of CNN. Lastly, Extreme Learning Machine Auto Encoder (ELM-AE) is used to check the existence of corona virus and further classification is done to classify the covid-19 data into respective classes. The suggested MBWO-CNN model was evaluated for effectiveness by undergoing experiments and the outcomes attained were matched with the outcome stationed by prevailing methods. The outcomes confirmed the astonishing results of the ELM-AE model to classify cov-id-19 data by achieving maximum accuracy of 97.53%. The efficacy of the proposed method is validated and observed that it has yielded outstanding outcomes and is best suitable to diagnose and classify covid-19 data. © 2022, Tech Science Press. All rights reserved.

2.
Designs ; 6(1):10, 2022.
Article in English | ProQuest Central | ID: covidwho-1715164

ABSTRACT

An aerodynamic optimization for a Droop-Nose Leading-Edge (DNLE) morphing of a well-known UAV, the UAS-S45, is proposed, using a novel Black Widow Optimization (BWO) algorithm. This approach integrates the optimization algorithm with a modified Class-Shape Transformation (CST) parameterization method to enhance aerodynamic performance by minimizing drag and maximizing aerodynamic endurance at the cruise flight condition. The CST parameterization technique is used to parameterize the reference airfoil by introducing local shape changes and provide skin flexibility to obtain various optimized morphing airfoil configurations. The optimization framework uses an in-house MATLAB algorithm, while the aerodynamic calculations use the XFoil solver with flow transition estimation criteria. These results are validated with a CFD solver utilizing the Transition (γ−Reθ) Shear Stress Transport (SST) turbulence model. Numerical studies verified the effectiveness of the optimization strategy, and the optimized airfoils have shown a significant improvement in overall aerodynamic performance by up to 12.18% drag reduction compared to the reference airfoil, and an increase in aerodynamic endurance of up to 10% for the UAS-S45 optimized airfoil configurations over its reference airfoil. These results indicate the importance of leading-edge morphing in enhancing the aerodynamic efficiency of the UAS-S45 airfoil.

SELECTION OF CITATIONS
SEARCH DETAIL